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The geometric construction of Ewald sphere and Bragg 
condition: 
 
The construction of Ewald sphere must be done such that the 
Bragg condition is satisfied. This can be done as follows: 
i) Draw a wave vector k

r
in the direction of x-ray beam. It is 

chosen to start from a certain origin which represents a 
reciprocal lattice point. 

ii) Draw a sphere of radius 
λ
π2

=k
r

about this chosen origin. 

iii) A diffracted beam of wave vector k ′
r

(with a magnitude 
of

λ
π2

=′k
r

) will be formed if the sphere intersects at any 

other reciprocal lattice point (at the tail of this vector). 
iv)  A reciprocal lattice vector G

r
that connects the reciprocal 

lattice point (origin) to the reciprocal lattice point (at the 
tail of diffracted beam vector) such that kkG

rrr
−′= , as 

shown in figure 42, where GK
rr

= is chosen. 
 
 
 
 

 
 
Figure 42: The Ewald sphere construction. 
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Experimental techniques: 

 

The wave length, in most experiments, is controlled by 

regulating the energy of the beam particles. The wave length λ 

of any beam particles can be easily obtained from the 

relation 2
122

)2(
mE
hπλ = , where m is the mass of the particle and 

E is the energy of the beam particles. However the wave length 

λ of photons is )2(
E

chπλ = , where c is the velocity of light. 

Photons useful for structure analysis have energies on the order 

of 10 keV. While electrons have energies on the order of 100eV 

and protons have energies on the order of 0.1eV. 

The wave length λ of the continuous portion of x-ray radiation 

can be obtained at a minimum )2(min eV
chπλ = , where V is the 

accelerating potential of the incident electrons that appear as 

photons in the x-ray instrument. This wave length has another 

limit λmax. 

The wave length λ of the other portion of x-ray radiation (which 

represents a series of narrow, intense peaks with certain 

wavelengths) depends on the characteristic lines of the typical 

target employed in the x-ray instrument. For example, the 

average of the Kα lines is at 1.54
o

A   and that of Kβ lines is at 

1.39
o

A  for a copper target. 
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Three main experimental methods: 

1) Laue method 

2) Rotating crystal method. 

3) Powder method.  

 

In each of these methods, the main purpose is to make sure that a 

reasonable number of peaks can be obtained either by using a 

wide spectrum of wave lengths or a wide variety of crystal 

orientations. In particular, an incident wave vector k
r

will lead to a 

diffraction peak (or "Bragg reflection") if and only if the head of this 

wave vector lies on k-space Bragg plane. Thus, to search for 

Bragg peaks, we must either fix the magnitude of k
r

and keep 

varying its direction (varying the orientation of the crystal with 

respect to the incident beam direction), or changing the magnitude 

of k
r

(i.e. changing the wave length of the incident beam). 

1. The Laue method: 

In this method the continuous portion of x-ray radiation is used 

to illuminate the sample under study. The wave lengths in the 

range λmin < λ < λmax  with values 0.2
o

A  < λ < 3
o

A  may b used. 

Now a single crystal of fixed orientation from a fixed incident 

beam direction n̂   with the above-mentioned range of wave 

lengths can be used to get Bragg peaks. The Ewald  spheres 

for the Laue method can be constructed when two vectors are 

drawn in the same direction with their heads at the same 

reciprocal point, as shown in figure 43. The longer vector ok
r

 

has a magnitude 
min

2
λ
π and is the radius of the large sphere. The 
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shorter one 1k
r

has a magnitude 
max

2
λ
π and is the radius of the 

small sphere. However Bragg peaks can be observed 

corresponding to any reciprocal lattice vectors lying within the 

region contained between the two spheres. The projection of 

the reciprocal lattice vectors G
r

 along the unit vector n̂ in the 

direction of the incident beam may be obtained from: 

θsinˆ GGn
rr

−=•  , 

⇒
G

Gn
r

r
•

−=
ˆ

sinθ  

Also G
k

G
r

r

r

π
λθ
4

2sin == . 

Thus the required wave length can be found as: 

2

ˆ
4

G

Gn
r

r
•

−= πλ . 

Notes: 

1) A given peak may be found when the wavelength for each 

reciprocal lattice vector is evaluated within the range λmin < λ 

< λmax  and if the structure factor does exist. 

2) The scattering angle from the above-mentioned relation can 

be used to find the direction of G
r

and not its magnitude. 

3) Since the range of the wave lengths in the incident beam is 

limited then the relation 2

ˆ
4

G

Gn
r

r
•

−= πλ  can be used to place 

limits on the magnitude of reciprocal lattice vectors. 
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Figure 43: The Ewald spheres construction for the Laue 
method. 
 

The use of Laue method: 

This method is widely used to determine lattice symmetry. In 

particular, it is used to determine the orientation of a single crystal 

sample whose structure is known. If the incident direction lies 

along a symmetry axis of the crystal (i.e. four fold symmetry for 

NaCl structure) the pattern of spots produced by the Bragg 

reflected rays will have the same symmetry. This is shown in figure 

44. 
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Figure 44: A Laue pattern for NaCl crystal. This pattern shows 
the four fold symmetry. 
 

 

2. The rotating-crystal method: 

In this method a monochromatic x-ray is used with varying angle of 

incidence. The direction of the x-ray beam is kept fixed and the 

orientation of the crystal varied. As the crystal rotates the 

reciprocal lattice points will rotate about the fixed axis. Thus the 

Ewald sphere (which is determined by the fixed incident wave 

vector k
r

) is fixed in k-space, while the entire reciprocal lattice 

rotates about the axis of rotation of the crystal. However, as 

reciprocal lattice rotates, different reciprocal lattice points cross the 

surface of the Ewald sphere and when a point is on the surface, 

the corresponding intensity peak is produced, as shown in figure 

45. 
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Figure 45: The Ewald construction for the rotating-crystal 
method. 
 
 
The use of rotating-crystal method: 
It is used to determine the shape and size of the unit cell. 
 
3. The powder method (or Debye-scherrer method): 
  
This method is similar to the previous method in (2) (the 
rotating-crystal method), but has in addition the axis of rotation 
is changed over all possible orientations. In this method a 
polycrystalline sample (or a powder of large number of small 
randomly oriented crystals) is illuminated by a monochromatic 
beam. The Bragg peaks will be found by fixing both the incident 
beam wave vector k

r
and the Ewald sphere and then allowing 

the reciprocal lattice to rotate through all possible angles about 
the origin so that each reciprocal lattice vector K

r
generates a 

sphere of radius k
r

about the origin. Such a sphere will intersect 
the Ewald sphere in a circle provided that K is less than 2k, as 
shown in figure 46. The vector joining any point on such a circle 
with the head of k

r
is a wave vector k ′

r
, for which scattered 

radiation will be observed. Each reciprocal lattice vector of 
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length less than 4π/λ and non-vanishing structure factors will 
have a corresponding scattered peak. 

2
sin2 φkK = . 

 
 
 
 
 

 
 
 
 
Figure 46: The Ewald construction for the powder method. 
 
 
A crystal is oriented such that an intense scattered beam occurs 
with an angleθ . If the crystal is rotated about the direction of the 
incident beam, the scattered beam rotates around the surface 
of a cone with apex at the crystal and with an angle of apex 
equal twice the scattering angle (i.e θφ 2= ), as shown in 
figure 47. 
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The indexing of powder pattern: 
The powder pattern on a film may appear as a series of 
concentric rings, one for each possible scattering angle. If we 
consider a cubic crystal of edge a, the value of a can be 
determined experimentally. Now if the simple cubic lattice is 
used as a basis for the indices, the separation of the (hkl ) 
planes is given by: 

222 l++
=

kh
ad  . By substituting this 

expression into Bragg law we get 2

2
2

4
sin

a
Nλθ = , 

where )( 2222 l++= khnN . 
The scattering angle θ is measured for each ring and a value of 
N is assigned for each ring. Values of N are selected so that 
their ratios are the same as the ratios of the orresponding 
values of sin2θ. If more than one set of integers has the same 
ratios, the one with the smallest values is usually selected 
e.g. for bcc lattice N must be even because h + k + l is even 
and the square of even is even. Also the square of odd is odd. 
For fcc lattice the indices must be all even or all odd. 
 
 
 
 
 

Figure 47: The scattered beam rotates around 
the surface of a cone with apex at the sample 
with θφ 2= . 

φθ
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